ZIAUDDINUNIVERSITY
 EXAMINATION BOARD

MODEL PAPER, 2023

Subject: Mathematics	Grade- X	M. Marks: 75	Time: 3 Hours

SECTION "A"

Note: Chose the correct answer for each question from the given options.

1. If $A=\{1,2,3,4\}$ and $B=\{2,4,6\}$ then $A \Delta B=$
a. $\{1,3\}$
b. $\{2,3\}$
c. $\{1,3,6\}$
d. $\{6\}$
2. If $(x, 6)=(2, y, 6)$ than $x+y=$.
a. 8
b. 10
c. 12
d. 14
3. The mean proportion between a^{2} and b^{2} is .
a. $\sqrt{a b}$
b. ab
c. $\frac{a}{b}$
d. ab
4. The mean proportion between a^{2} and b^{2} is.
a. 20
b. 15
c. 60
d. 36
5. Find x, if $\left[\begin{array}{ll}5 & 1 \\ 2 & x\end{array}\right]$ is a singular matrix.
a. $\frac{2}{5}$
b. $\frac{5}{2}$
c. $\frac{1}{5}$
d. 0
6. Partial fraction of $\frac{x}{(x-a)(x-b(x-c)}$ can have a form.
a. $\frac{A}{x+a}+\frac{B}{x+b}+\frac{C}{x+c}$
b. $\frac{A}{x-a}+\frac{B}{x-b}+\frac{C}{x-c}$
c. $\frac{A}{x+a}+\frac{B}{x-b}+\frac{C}{x+c}$
d. None of these
7. The Positive square root of variance is called.
a. Standard deviation
b. Mean deviation
c. Range
d. Mode
8. These of the following are the sides of a right-angled triangle.
a. $3,4,5$
b. 2,3,4
c. 5,6,7
d. 4,5,6
9. Two equilateral triangles are also.
a. Congruent
b. Similar
c. Proportional
d. Equivalent
10. Diameter divides the circle into parts.
a. 2
b. 3
c. 4
11. The inscribe angle of minor are of a circle is ___ angle.
a. acute
b. obtuse
c. right
d. 5
12. The area of the circular sector when $r+2 \mathrm{~cm}$ and $\theta=3$ radian is
a. 6
b. 2
c. 3
d. 12
13. Closed. $\operatorname{Sin} \theta=3$ radian is
a. 1
b. 0
c. -1
d. 0.5
14. $\operatorname{Sec}^{2} \theta-\tan ^{2} \theta=$ \qquad a. 0 b. 1
c. -1
d. $\cos ^{2} \theta$
15. If $2 x, 3 y$ and $6^{\prime} z$ are in continued proportion then.
a. $y^{2}=12 x y$
b. $9 y^{2}=x z$
c. $9 y^{2}=12 x-z$
d. $3 y^{2}=4 x-z$

SECTION "B"
 (SHORT ANSWER QUESTION)

Note: Attempt any (Six) questions from this section
Q2. Solve the following equation by using componendo - dividendo theorem

$$
\begin{aligned}
& \sqrt{x+6}-\sqrt{x-6}-\frac{2}{5} \\
& \sqrt{x+6}+\sqrt{x-6}-
\end{aligned}
$$

If $a: b=c: d=e: f$ then show that $\left(a^{2}+c^{2}+\mathrm{e}^{2}\right)\left(\mathrm{b}^{2}+\mathrm{d}^{2}+\mathrm{f}^{2}\right)=(\mathrm{ab}+\mathrm{cd}+\mathrm{ef})^{2}$
Q3. If $A=\{1,2,3,4,6,12\}, B=\{2,4,6,8\}$ and $\cup=\{1,2,3 \cdots-\cdots-12\}$ prove that $A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}$
OR
If $A=\{1,2,3,4,5,6\}$ and $B=\{2,4,6,8,10\}$ prove that $\mathrm{A} \Delta \mathrm{B}=(\boldsymbol{A} \cup \boldsymbol{B})^{\prime}(\boldsymbol{A} \cap \boldsymbol{B})$
Q4. Show that $(1+W)\left(1+W^{2}\right)\left(1+W^{4}\right)\left(1+W^{8}\right)=\left(W+W^{2}\right)^{4}$
OR
Find the cube roots of 216
Q5. Resolve the following into partial fraction.

$$
\frac{x^{2}-3 x+6}{x(x-2)(x-1)}
$$

Q6. Find median 51,55,52,54,58,60,61,62,52,57,52,64
OR
Find the variance of the marks of student which are $10,20,30,40,50,60$
Q7. Prove that (Any one)

1. $\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta=\sec \theta \quad$ 2. $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{\sin \theta}{1-\cos \theta}$

Q8. Find the area of the sector, whose radius is 4 cm with central angle of $\frac{\bar{\wedge}}{4}$ radian.
OR
From the top of a light house 102 m high measure of the angle of depression of a ship is $\mathbf{1 8}^{\circ} \mathbf{3 0}$. How far is the ship from the light house.
Q9. Prove that, the two tangents, drawn to a circle from a point outside it, are equal is length
Q10. Perpendicular from the center of a circle to a chord bisects it.
Q11. One and only one circle can pass through three non-collinear points.

SECTION "C"
 DESCRIPTIVE ANSWER OUESTIONS

Note: Attempt all questions from the following.
Note: Attempt any three questions from this section.
Q12. Find solution by matrix inverse method OR Cramer's rule of the following.
$2 x x+3 y=14$ and $-44 x+y+28$
OR
Find the inverse of the matrix by adjoint method $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]$
Q13. Draw two unequal circles of radii 3.3 cm and 2.1 cm with Centre \mathbf{A} and \mathbf{B} respectively such that $m \overline{A B}=8 \mathrm{~cm}$,
Draw direct common tangents to these circle (Also write steps of construction)
OR
Draw the circumcircle of $\triangle \mathbf{A B C}$ in which $m \overline{A B}=6 \mathrm{~cm}, m \bar{B} c=5 \mathrm{~cm}$ and $\overline{A C}=7 \mathrm{~cm}$. Also Write the steps of construction.
Q14. If two chords of a circle are congruent then they will be equidistant from the Centre prove it.
Q15. A line parallel to one side of triangle and intersecting the other two sides, divides them proportionally. Prove it
Q16. If the square of one side of triangle 5 equal to the sum of the square of the other two sides, then the triangle is a right-angle triangle prove it.

